viernes, 28 de noviembre de 2014

Ciencia

La materia oscura

Ciencia



La materia oscura


En astrofísica y cosmología física se denomina materia oscura a la hipotética materia que no emite suficiente radiación electromagnética para ser detectada con los medios técnicos actuales, pero cuya existencia se puede deducir a partir de los efectos gravitacionales que causa en la materia visible, tales como las estrellas o las galaxias, así como en las anisotropías del fondo cósmico de microondas presente en el universo.
No se debe confundir la materia oscura con la energía oscura. De acuerdo con las observaciones actuales (2010) de estructuras mayores que una galaxia, así como la cosmología del Big Bang, la materia oscura constituye del orden del 21% de la masa del Universo observable y la energía oscura el 70%.
La materia oscura fue propuesta por Fritz Zwicky en 1933 ante la evidencia de una "masa no visible" que influía en las velocidades orbitales de las galaxias en los cúmulos. Posteriormente, otras observaciones han indicado la presencia de materia oscura en el universo: estas observaciones incluyen la citada velocidad de rotación de las galaxias, las lentes gravitacionales de los objetos de fondo por los cúmulos de galaxias, tales como el Cúmulo Bala (1E 0657-56) y la distribución de la temperatura del gas caliente en galaxias y cúmulos de galaxias.
¿Cómo sabemos que en el universo debe existir materia oscura?
 Las estrellas en algunas galaxias espirales giran muy rápidamente. Según las leyes de la mecánica de Newton, la velocidad de una estrella a lo largo de su órbita depende de la masa de la galaxia contenida dentro de la órbita de la estrella. Sin embargo la masa visible es mucho menor que lo esperado. ¿Dónde está la masa que falta? 
 Las galaxias en el universo normalmente se agrupan en cúmulos que para mantenerse unidos necesitan de la fuerza de atracción gravitacional producida por una gran cantidad de masa. La masa requerida no se observa. ¿Dónde está? 
Las grandes estructuras que vemos en el universo se formaron a partir de pequeñas irregularidades en la distribución de la materia al momento del big-bang. Más adelante, con la ayuda de la gravedad, estas fluctuaciones se hacen cada vez más fuertes y al final resultan galaxias, cúmulos, etc. Por otro lado, la radiación existente en el universo interactúa con la materia y por lo tanto se ve afectada por estas fluctuaciones. La señal que queda en la radiación de fondo es como una fotografía del universo joven y fue tomada por primera vez por el satélite COBE. El análisis de las fluctuaciones en la radiación de fondo indica que debe existir más materia en el universo de lo que observamos a simple vista. ¿Dónde está la materia que no observamos? 
En un sistema binario formado por una estrella y un agujero negro, los dos cuerpos se mueven en una órbita en torno a un centro común. El agujero negro no se ve, pero la estrella si se puede ver. Debido al movimiento de la estrella en torno al centro del sistema binario, desde la Tierra se ve como si ésta se alejara y acercara cíclicamente. Este fenómeno se ha confirmado observando el efecto Doppler de la luz emitida por la estrella. 
Existen fuertes argumentos teóricos a favor de un universo dominado por materia oscura. Estos argumentos se basan en el llamado modelo inflacionario según el cual el universo sufrió un período de crecimiento acelerado a los pocos instantes después del Big Bang. Esta teoría predice que el universo estaría dominado por materia oscura: 99% de la materia que forma el universo no es visible. La cantidad total de masa predicha por este modelo es un parámetro que los astrofísicos llaman la masa crítica del universo.  
 Fuentes bibliográficas: http://es.wikipedia.org/wiki/Materia_oscura
http://astroverada.com/_/Main/T_darkmatter.html

martes, 25 de noviembre de 2014

Ciencia

Estado Plasmático


El estado plasmático es un estado de alto contenido energético, a temperaturas elevadas las moléculas gaseosas se ionizan a expensas de los choques de los átomos o moléculas que se mueven rápidamente.
El estado plasmático se produce cuando la materia está sometida a temperaturas mayores a 10000°C, como la que se alcanza en el sol y en todas las estrellas.
En esas condiciones, los átomos pierden algunos de sus electrones, convirtiéndose en iones. Así, la materia se convierte en un conjunto de iones positivos y de electrones cargados negativamente, que se mueven entre los iones sin estar ligados a ninguno de ellos.
El plasma presenta características propias que no se dan en los sólidos, líquidos o gases, por lo que es considerado otro estado de agregación de la materia. Como el gas, el plasma no tiene una forma definida o un volumen definido, a no ser que esté encerrado en un contenedor; pero a diferencia del gas en el que no existen efectos colectivos importantes, el plasma bajo la influencia de un campo magnético puede formar estructuras como filamentos, rayos y capas dobles. Los átomos de este estado se mueven libremente; cuanto más alta es la temperatura más rápido se mueven los átomos en el gas, y en el momento de colisionar la velocidad es tan alta que se produce un desprendimiento de electrones.
Calentar un gas puede ionizar sus moléculas o átomos (reduciendo o incrementado su número de electrones para formar iones), convirtiéndolo en un plasma. La ionización también puede ser inducida por otros medios, como la aplicación de un fuerte campo electromagnético mediante un láser o un generador de microondas, y es acompañado por la disociación de los enlaces covalentes, si están presentes.


Aplicaciones
Las LCF son ejemplo de aplicación del plasma.
La física de plasmas puede encontrar aplicación en diversas áreas:
Descargas de gas (electrónica gaseosa).
Fusión termonuclear controlada.
Física del espacio.
Astrofísica moderna.
Conversión de energía de MHD (magnetohidrodinámica) y propulsión iónica.
Plasmas de estado sólido.
Láseres de gas.


Fuentes bibliográficas: http://www.fullquimica.com/2012/08/el-estado-plasmatico.html
http://es.wikipedia.org/wiki/Plasma_%28estado_de_la_materia%29

martes, 18 de noviembre de 2014

Ciencia

La nanotecnología

Nanotecnología, es el estudio y desarrollo de sistemas en escala nanométrica, “nano” es un prefijo del Sistema Internacional de Unidades   que viene del griego νάνος que significa enano, y corresponde a un factor 10^-9,  que aplicado a las unidades de longitud, corresponde a una mil millonésima parte de un metro (10^-9 Metros) es decir 1 Nanómetro, la nanotecnología estudia la materia desde un nivel de resolución nanométrico, entre 1 y 100 Nanómetros aprox.  hay que saber que un átomo mide menos de 1 nanómetro pero una molécula puede ser mayor, en esta escala se observan propiedades y fenómenos totalmente nuevos,  que se rigen bajo las leyes de la Mecánica Cuántica , estas nuevas propiedades son las que los científicos aprovechan para crear nuevos materiales (nano materiales) o  dispositivos nanotecnológicos, de esta forma la Nanotecnología promete soluciones a múltiples problemas que enfrenta actualmente la humanidad, como los ambientales, energéticos, de salud (nano medicina), y muchos otros, sin embargo estas nuevas tecnologías pueden conllevar a riesgos y peligros si son mal utilizadas.
Historia

El ganador del premio Nobel de Física de 1965, Richard Feynman, fue el primero en hacer referencia a las posibilidades de la nanociencia y la nanotecnología en un discurso que dio en el Caltech (Instituto Tecnológico de California) el 29 de diciembre de 1959, titulado En el fondo hay espacio de sobra (There's Plenty of Room at the Bottom), en el que describe la posibilidad de la síntesis vía la manipulación directa de los átomos. El término "nanotecnología" fue usado por primera vez por Norio Taniguchi en el año 1974, aunque esto no es ampliamente conocido.
Inspirado en los conceptos de Feynman, en forma independiente K. Eric Drexler usó el término "nanotecnología" en su libro del año 1986 Motores de la Creación: La Llegada de la Era de la Nanotecnología (en inglés: Engines of Creation: The Coming Era of Nanotechnology), en el que propuso la idea de un "ensamblador" a nanoescala que sería capaz de construir una copia de sí mismo y de otros elementos de complejidad arbitraria con un nivel de control atómico. También en el año 1986, Drexler co-fundó The Foresight Institute (en castellano: El Instituto de Estudios Prospectivos), con el cual ya no tiene relación, para ayudar a aumentar la conciencia y comprensión pública de los conceptos de la nanotecnología y sus implicaciones.

Así, el surgimiento de la nanotecnología como un campo en la década de 1980 ocurrió por la convergencia del trabajo teórico y público de Drexler, quien desarrolló y popularizó un marco conceptual para la nanotecnología, y los avances experimentales de alta visibilidad que atrajeron atención adicional a amplia escala a los prospectos del control atómico de la materia.

Citas Bibliográficas: http://es.wikipedia.org/wiki/Nanotecnolog%C3%ADa
http://www.nanotecnologia.cl/que-es-nanotecnologia/

miércoles, 12 de noviembre de 2014

Ciencia

EL ADN

Ciencia

El ADN


ADN significa ácido desoxirribonucleico. El ADN es la molécula que lleva la información genética utilizada por una célula para la creación de proteínas. El ADN contiene las instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos. La función principal de las moléculas de ADN es el almacenamiento a largo plazo de la información genética.
Es un ácido nucleico que contiene instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. La función principal de la molécula de ADN es el almacenamiento a largo plazo de información. Muchas veces, el ADN es comparado con un plano o una receta, o un código, ya que contiene las instrucciones necesarias para construir otros componentes de las células, como las proteínas y las moléculas de ARN. Los segmentos de ADN que llevan esta información genética son llamados genes, pero las otras secuencias de ADN tienen propósitos estructurales o toman parte en la regulación del uso de esta información genética.
El ADN lo aisló por primera vez, durante el invierno de 1869, el médico suizo Friedrich Miescher mientras trabajaba en la Universidad de Tubinga. Miescher realizaba experimentos acerca de la composición química del pus de vendas quirúrgicas desechadas cuando notó un precipitado de una sustancia desconocida que caracterizó químicamente más tarde.2 3 Lo llamó nucleína, debido a que lo había extraído a partir de núcleos celulares.4 Se necesitaron casi 70 años de investigación para poder identificar los componentes y la estructura de los ácidos nucleicos.
Historia

En 1919 Phoebus Levene identificó que un nucleótido está formado por una base nitrogenada, un azúcar y un fosfato. Levene sugirió que el ADN generaba una estructura con forma de solenoide (muelle) con unidades de nucleótidos unidos a través de los grupos fosfato. En 1930 Levene y su maestro Albrecht Kossel probaron que la nucleína de Miescher es un ácido desoxirribonucleico (ADN) formado por cuatro bases nitrogenadas (citosina (C), timina (T), adenina (A) y guanina (G)), el azúcar desoxirribosa y un grupo fosfato, y que, en su estructura básica, el nucleótido está compuesto por un azúcar unido a la base y al fosfato. Sin embargo, Levene pensaba que la cadena era corta y que las bases se repetían en un orden fijo. En 1937 William Astbury produjo el primer patrón de difracción de rayos X que mostraba que el ADN tenía una estructura regular.
La función biológica del ADN comenzó a dilucidarse en 1928, con una serie básica de experimentos de la genética moderna realizados por Frederick Griffith, quien estaba trabajando con cepas "lisas" (S) o "rugosas" (R) de la bacteria Pneumococcus (causante de la neumonía).
Propiedades
El ADN es un largo polímero formado por unidades repetitivas, los nucleótidos. Una doble cadena de ADN mide de 22 a 26 angstroms (2,2 a 2,6 nanómetros) de ancho, y una unidad (un nucleótido) mide 3,3 Å (0,33 nm) de largo. Aunque cada unidad individual que se repite es muy pequeña, los polímeros de ADN pueden ser moléculas enormes que contienen millones de nucleótidos. Por ejemplo, el cromosoma humano más largo, el cromosoma número 1, tiene aproximadamente 220 millones de pares de bases.

En los organismos vivos, el ADN no suele existir como una molécula individual, sino como una pareja de moléculas estrechamente asociadas. Las dos cadenas de ADN se enroscan sobre sí mismas formando una especie de escalera de caracol, denominada doble hélice. El modelo de estructura en doble hélice fue propuesto en 1953 por James Watson y Francis Crick (el artículo Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid fue publicado el 25 de abril de 1953 en Nature), después de obtener una imagen de la estructura de doble hélice gracias a la refracción por rayos X hecha por Rosalind Franklin.
Estructura de soporte: La estructura de soporte de una hebra de ADN está formada por unidades alternas de grupos fosfato y azúcar (desoxirribosa).27 El azúcar en el ADN es una pentosa, concretamente, la desoxirribosa.
Ácido fosfórico: Enlace fosfodiéster. El grupo fosfato (PO43-) une el carbono 5' del azúcar de un nucleósido con el carbono 3' del siguiente.
Su fórmula química es H3PO4. Cada nucleótido puede contener uno (monofosfato: AMP), dos (difosfato: ADP) o tres (trifosfato: ATP) grupos de ácido fosfórico, aunque como monómeros constituyentes de los ácidos nucleicos sólo aparecen en forma de nucleósidos monofosfato.
Desoxirribosa: Es un monosacárido de 5 átomos de carbono (una pentosa) derivado de la ribosa, que forma parte de la estructura de nucleótidos del ADN. Su fórmula es C5H10O4. Una de las principales diferencias entre el ADN y el ARN es el azúcar, pues en el ARN la 2-desoxirribosa del ADN es reemplazada por una pentosa alternativa, la ribosa.25
Las moléculas de azúcar se unen entre sí a través de grupos fosfato, que forman enlaces fosfodiéster entre los átomos de carbono tercero (3′, «tres prima») y quinto (5′, «cinco prima») de dos anillos adyacentes de azúcar. La formación de enlaces asimétricos implica que cada hebra de ADN tiene una dirección. En una doble hélice, la dirección de los nucleótidos en una hebra (3′ → 5′) es opuesta a la dirección en la otra hebra (5′ → 3′). Esta organización de las hebras de ADN se denomina antiparalela; son cadenas paralelas, pero con direcciones opuestas. De la misma manera, los extremos asimétricos de las hebras de ADN se denominan extremo 5′ («cinco prima») y extremo 3′ («tres prima»), respectivamente.
Bases nitrogenadas: Las cuatro bases nitrogenadas mayoritarias que se encuentran en el ADN son la adenina (A), la citosina (C), la guanina (G) y la timina (T). Cada una de estas cuatro bases está unida al armazón de azúcar-fosfato a través del azúcar para formar el nucleótido completo (base-azúcar-fosfato). Las bases son compuestos heterocíclicos y aromáticos con dos o más átomos de nitrógeno, y, dentro de las bases mayoritarias, se clasifican en dos grupos: las bases púricas o purinas (adenina y guanina), derivadas de la purina y formadas por dos anillos unidos entre sí, y las bases pirimidínicas o bases pirimídicas o pirimidinas (citosina y timina), derivadas de la pirimidina y con un solo anillo.25 En los ácidos nucleicos existe una quinta base pirimidínica, denominada uracilo (U), que normalmente ocupa el lugar de la timina en el ARN y difiere de ésta en que carece de un grupo metilo en su anillo. El uracilo no se encuentra habitualmente en el ADN, sólo aparece raramente como un producto residual de la degradación de la citosina por procesos de desaminación oxidativa.
Timina: En el código genético se representa con la letra T. Es un derivado pirimidínico con un grupo oxo en las posiciones 2 y 4, y un grupo metil en la posición 5. Forma el nucleósido timidina (siempre desoxitimidina, ya que sólo aparece en el ADN) y el nucleótido timidilato o timidina monofosfato (dTMP). En el ADN, la timina siempre se empareja con la adenina de la cadena complementaria mediante 2 puentes de hidrógeno, T=A. Su fórmula química es C5H6N2O2 y su nomenclatura 2, 4-dioxo, 5-metilpirimidina.
Citosina: En el código genético se representa con la letra C. Es un derivado pirimidínico, con un grupo amino en posición 4 y un grupo oxo en posición 2. Forma el nucleósido citidina (desoxicitidina en el ADN) y el nucleótido citidilato o (desoxi) citidina monofosfato (dCMP en el ADN, CMP en el ARN). La citosina siempre se empareja en el ADN con la guanina de la cadena complementaria mediante un triple enlace, C≡G. Su fórmula química es C4H5N3O y su nomenclatura 2-oxo, 4 aminopirimidina. Su masa molecular es de 111,10 unidades de masa atómica. La citosina se descubrió en 1894, al aislarla del tejido del timo de carnero.
Adenina: En el código genético se representa con la letra A. Es un derivado de la purina con un grupo amino en la posición 6. Forma el nucleósido adenosina (desoxiadenosina en el ADN) y el nucleótido adenilato o (desoxi) adenosina monofosfato (dAMP, AMP). En el ADN siempre se empareja con la timina de la cadena complementaria mediante 2 puentes de hidrógeno, A=T. Su fórmula química es C5H5N5 y su nomenclatura 6-aminopurina. La adenina, junto con la timina, fue descubierta en 1885 por el médico alemán Albrecht Kossel.

Guanina: En el código genético se representa con la letra G. Es un derivado púrico con un grupo oxo en la posición 6 y un grupo amino en la posición 2. Forma el nucleósido (desoxi) guanosina y el nucleótido guanilato o (desoxi) guanosina monofosfato (dGMP, GMP). La guanina siempre se empareja en el ADN con la citosina de la cadena complementaria mediante tres enlaces de hidrógeno, G≡C. Su fórmula química es C5H5N5O y su nomenclatura 6-oxo, 2-aminopurina.



Fuentes : http://easylearngenetics.net/what-is-genetics/what-is-dna/que-es-el-adn/
http://es.wikipedia.org/wiki/%C3%81cido_desoxirribonucleico


domingo, 9 de noviembre de 2014

El tiburón martillo



El Tiburón Martillo se extingue



Tres de las especies de tiburones del mundo se encuentran en peligro de desaparecer. El tiburón martillo, el sedoso y el zorro están incluidos en las listas de riesgo de la Unión Internacional para la Conservación de la Naturaleza (UICN), principalmente por la pesca.
Según datos de la Organización No Gubernamental Pew Charitable Trusts (PEW), los martillo son la población de los tiburones que más ha sufrido de la depredación del ser humano. En 15 años se perdió el 90% de los animales de las dos especies de martillo, gigante y común. Por ello, se han iniciado planes de acción para la protección de estas especies, íconos de las islas Galápagos.
Estas especies ya se encuentran en el Apéndice II de Protección de la Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (Cites). Esto garantiza que los gobiernos que forman parte de este instrumento internacional establezcan políticas públicas para su conservación y planes para su manejo sustentable para el futuro. Ahora, el objetivo es incluirlas también en la lista de la Convención para la Conservación de las Especies Migratorias (CMS), que la integran 120 países del mundo.
Esta es la propuesta que Ecuador y Costa Rica llevaron a la XI Conferencia de los partes de la CMS, que concluye hoy en Quito, y en la cual se votará para determinar su inclusión o no en el Apéndice II.
Sin embargo, hay voces que cuestionan que no se haya propuesto la clasificación de los tiburones martillo en la lista I, que determina la prohibición completa de pesca y captura de ejemplares. La respuesta de las autoridades de los dos países fue que este es un nivel que debe cumplirse antes de pasar a una medida más radical, que podría ser bloqueada.
Las cifras de captura de tiburones son alarmantes. Algunos son atrapados porque países como China son consumidores de aleta de tiburón, y otros  caen en redes como  pesca incidental.
Según Luke Warwick, de PEW, alrededor de 100 millones de tiburones por año han sido capturados en la última década, principalmente en Indonesia, España, Japón,  México, Argentina y Brasil.
El problema de la reducción de estas especies es que el ciclo de vida de los tiburones es mucho más lento que el de otros peces, lo que los vuelve más vulnerables y afecta al balance de este animal. Según Maximiliano Bello, de PEW, el tiburón martillo demora más de 10 años en alcanzar la madurez reproductiva y tienen entre  10-15 crías, lo que origina que la especie no se regenere tan rápido como otras. “El problema de la llamada pesca incidental es que mucha de ella se retiene, por lo que se convierte en pesca objetivo”, explicó Bello. Por ello, instó a que se tomen medidas mucho más duras para evitar este mal a escala mundial.
Los tiburones son unas de las especies más migratorias del mundo. Algunas de las especies recorren todos los continentes y otras solo unos cuantos países. Por ello, se requieren  acciones y normativas transfronterizas para protegerlas. “Normalmente escuchamos que el tiburón es el depredador pero en realidad nosotros somos los depredadores de los tiburones”, dijo Bello.
Su idea fue complementada por Philippe Cousteau, nieto del investigador francés Jacques Cousteau, quien señaló que más personas mueren al año por la caída de cocos en sus cabezas que por mordidas de tiburones.



Bibliografía:  http://especiales.elcomercio.com/planeta-ideas/planeta/planeta-9-de-noviembre-de-2014/tiburon-martillo-extingue-estudios

sábado, 1 de noviembre de 2014

Fuentes de energía alternativa

Fuentes de energía alternativa
Se denomina energía alternativa, o más propiamente fuentes de energía alternativas, a aquellas fuentes de energía planteadas como alternativa a las tradicionales clásicas. No obstante, no existe consenso respecto a qué tecnologías están englobadas en este concepto, y la definición de "energía alternativa" difiere según los distintos autores: en las definiciones más restrictivas, energía alternativa sería equivalente al concepto de energía renovable o energía verde, mientras que las definiciones más amplias consideran energías alternativas a todas las fuentes de energía que no implican la quema de combustibles fósiles (carbón, gas y petróleo); en estas definiciones, además de las renovables, están incluidas la energía nuclear o incluso la hidroeléctrica.
Los combustibles fósiles han sido la fuente de energía empleada durante la revolución industrial, pero en la actualidad presentan fundamentalmente dos problemas: por un lado son recursos finitos, y se prevé el agotamiento de las reservas (especialmente de petróleo) en plazos más o menos cercanos, en función de los distintos estudios publicados. Por otra parte, la quema de estos combustibles libera a la atmósfera grandes cantidades de CO2, que ha sido acusado de ser la causa principal del calentamiento global. Por estos motivos, se estudian distintas opciones para sustituir la quema de combustibles fósiles por otras fuentes de energía carentes de estos problemas.

Energía solar
La idea de aprovechar la energía solar no es novedosa. Fue a partir de fines de 1970 que se tuvo la tecnología para hacerlo posible. El proceso básico es simple. Los paneles solares concentran la luz solar que cae sobre ellos y la convierten en energía. Esto se logra de varias maneras y depende del objetivo; ya sea electricidad para una región o agua caliente para una piscina. El mayor obstáculo de la energía solar es el precio de la instalación. El equipo solar cuesta mucho más que un equipo tradicional de energía. Lleva muchos años de uso ver que la inversión valió la pena. A pesar del costo, la energía solar permite que se pueda complementar la energía en las ciudades. En zonas rurales, donde el costo del tendido de los cables eléctricos aumenta, la energía solar es la mejor opción de electricidad.
Energía hidroeléctrica
La energía hidroeléctrica utiliza la energía del agua que cae para hacer girar turbinas y generar electricidad. La energía que se genera de esta forma depende del control de un curso de agua, como por ejemplo un río, a menudo con una presa. La energía hidroeléctrica tiene varias ventajas. Es casi obvio que es renovable. Los generadores impulsados por agua no producen emisiones. El flujo de agua, controlado dentro de la planta hidroeléctrica, determina la cantidad de electricidad producida para generar la energía necesaria. Aproximadamente el 20% de la electricidad mundial proviene de esta fuente. Entre los principales usuarios de la energía hidroeléctrica se encuentran Noruega, Rusia, China, Canadá, Estados Unidos y Brasil.

Combustible de biomasa
"Biomasa" define casi cualquier residuo vegetal, desperdicio de madera, desperdicio agrícola y de vertedero de basura, así como también determinados cultivos que se utilizan como combustible. Estos desperdicios provienen de industrias como las madereras, la industria de la construcción, las papeleras; los desperdicios agrícolas provienen del cultivo de la tierra; e incluso los desperdicios sólidos provienen de vertederos de basura municipales y el gas metano generado en estos vertederos. Además, algunos céspedes pueden cultivarse para la obtención de biocombustibles a partir de la fermentación. En todo el mundo, el combustible de biomasa, principalmente los productos derivados de la madera, se quema en forma paralela al carbón en plantas de energía eléctrica de combustión de carbón. Los biocombustibles representan el otro uso principal de la biomasa. El etanol puede utilizarse de forma aislada o como un agregado a la gasolina. La mayoría de los vehículos de Brasil funcionan con etanol. El biodiesel, hecho de aceite vegetal, grasa animal y grasa de restaurantes, bien puede reemplazar al combustible diesel estándar. También puede utilizarse en una mezcla. El mayor productor y usuario de biodiesel es Alemania.
Aunque al quemase produce dióxido de carbono, el combustible de biomasa se considera como "carbono neutral". Desde hace millones de años, los combustibles fósiles liberan CO2 y crean una carga adicional de CO2 en la atmósfera. El CO2 liberado por la combustión de la biomasa es absorbido por las plantas cultivadas para producirlo. Sin embargo, los combustibles fósiles todavía se utilizan en la producción de combustible de biomasa que impulsa la maquinaria agrícola y abastece los camiones cargados con troncos, y se utiliza en otros pasos del proceso. En este momento, el combustible de biomasa no es verdaderamente carbono neutral. Aunque, en general, disminuye las emisiones de CO2, que es un paso en la dirección correcta.
Energía eólica
Los pequeños molinos de viento eran frecuentes en todo el mundo hasta ser reemplazados por los motores de vapor y, posteriormente, por la electricidad. El interés por las grandes turbinas de viento aumentó a partir de la crisis del petróleo de 1970. Para 1980 los molinos de energía eólica, hileras de turbinas, comenzaron a verse en las zonas rurales de todo el mundo. Entre los principales usuarios de la energía eólica se encuentran Alemania, Estados Unidos, Dinamarca y España, e India y China como prometedores usuarios de la energía eólica.
Las gigantes turbinas de viento generan energía cuando el viento hace girar sus enormes paletas. Las paletas están conectadas a un generador que produce electricidad. Los grandes parques eólicos pueden cumplir con las necesidades básicas de energía de una empresa de servicios públicos. Los parques eólicos más pequeños y los molinos de viento individuales pueden abastecer hogares, antenas parabólicas y bombas de agua. Tal como ocurre con la energía solar, la construcción de los parques eólicos requiere una gran inversión inicial que no se amortiza con rapidez.
Energía geotérmica
La energía geotérmica toma fuentes naturales, tales como aguas termales y chorros de vapor, y las utiliza para producir electricidad o suministrar agua caliente a una región. Las plantas de energía geotérmica envían el vapor que llega a la superficie de la Tierra hacia turbinas. Las turbinas giran e impulsan generadores que producen electricidad. La primera planta generadora de energía geotérmica por vapor se inauguró en Larderello, Italia, en 1904. Esta planta todavía se encuentra en funcionamiento. Los Estados Unidos, Islandia, Las Filipinas, El Salvador, Rusia, Kenia y El Tíbet se encuentran entre los 24 países que utilizaron 8,900 megavatios de electricidad generados por instalaciones geotérmicas en 2005. La calefacción geotérmica directa utiliza agua caliente de la superficie de la Tierra, como por ejemplo aguas termales, para calefaccionar hogares y otros edificios. En 2005, alrededor de 16,000 megavatios de energía provinieron de fuentes geotérmicas directas, en aproximadamente 72 países.
Energía nuclear
La energía nuclear se presentó como una alternativa para los combustibles fósiles en 1970. Las plantas realizaban fisiones nucleares en un entorno controlado, lo que producía energía. Los bajos costos del combustible equilibraron la inversión financiera necesaria para crear las plantas de energía nuclear, y esto tenía como consecuencia electricidad a más bajo costo. A pesar de los graves accidentes en la planta Three Mile Island en Pensilvania y en Chernobil, Ucrania, la energía nuclear sigue siendo una fuente viable de energía en muchos lugares. Las plantas de energía nuclear suministran el 16% de la energía del mundo en 70 países. Son una fuente importante de energía para países sin muchos recursos de combustibles fósiles. Francia y Japón tienen programas particularmente activos de energía nuclear. Las plantas ahora incorporan múltiples sistemas de seguridad para evitar fusiones del núcleo y la liberación de sustancias radiactivas. Todavía resta preocupación acerca del desecho del combustible que se consume, que podría ser utilizado para fabricar armas nucleares.
Energía oceánica
Una planta de energía mareomotriz captura la energía del flujo de las mareas que entran y salen de las bahías o estuarios. Una presa especial denominada presa de contención separa el área de las mareas en cuencas superiores e inferiores. Las turbinas dentro de la presa de contención giran a medida que el agua fluye de una cuenca hacia la otra, según la dirección de la marea. Las turbinas impulsan un generador que, luego, produce electricidad.
La instalación de una planta mareomotriz es costosa, por lo tanto, la planta debe ser capaz de generar energía suficiente como para que la inversión valga la pena. Esto sucede únicamente cuando hay una diferencia de al menos 5 m (16 pies) entre la marea alta y la baja. Cualquier diferencia menor no genera la energía suficiente como para que la planta mareomotriz resulte viable desde el punto de vista financiero. Sólo aproximadamente 40 lugares en todo el mundo cumplen con estos criterios. La planta mareomotriz más conocida es La Rance Station en Bretaña, Francia. Entre otros lugares se encuentran la Planta Annapolis Royal en Nueva Escocia, Canadá, y también plantas en Rusia, China, India y Gales.
Energía pasiva
Existen muchas técnicas de edificación que pueden ayudar a refrigerar una casa durante el verano. Un alero amplio evita que los rayos del sol atraviesen las ventanas con vista al sur. Los árboles frondosos de hoja caduca también evitan que el sol llegue a estas ventanas. Dejar abiertas las ventanas con vista al norte permite que ingrese aire más fresco a la casa. Un ventilador de techo impulsa el aire hacia el mismo techo. La hilera más alta de las ventanas del claristorio se deja abierta para expulsar el aire caliente. Durante el crudo invierno, las técnicas de edificación sacan ventaja del calor proveniente del sol y el piso. Los árboles caducifolios han perdido sus hojas. Las ventanas térmicas del lado sur de la casa permiten que los rayos del sol, ahora más bajos, calienten el interior de la casa. Estos rayos también pasan por debajo del alero. El piso del interior de la casa incluye un absorbente térmico que retiene el calor. El ventilador de techo impulsa el aire caliente de arriba hacia abajo.
Células de combustible del hidrógeno
Muchas personas creen que el futuro se encuentra en las células de combustible del hidrógeno, grandes células para plantas de energía y pequeñas para motores y otras aplicaciones. Las ventajas del hidrógeno son diversas. La reacción del hidrógeno produce calor, electricidad y agua, pero no contamina. El hidrógeno es fácil de obtener y puede generarse a partir de combustibles fósiles o, lo que es más importante, de combustibles renovables. El hidrógeno es económico y más eficaz que cualquier tecnología que implique turbinas y mucho más eficaz que la combustión interna. Sin embargo, en la actualidad, la tecnología de hidrógeno es más costosa que las fuentes de energía existentes. Todavía no se conoce la instalación real de los sistemas para controlar las temperaturas y para fabricar las células de combustible en tamaños aprovechables. Estos temas deben estar resueltos antes de que las células de combustible del hidrógeno comiencen a reemplazar a otras fuentes de energía.
Fusión
La fusión nuclear es una fuente de energía que todavía está en etapa experimental. Pero, ¿qué es exactamente la fusión? La fusión suministra energía al sol y a las estrellas. Cuatro núcleos de hidrógeno (protones) se unen entre sí y forman núcleos de helio (dos protones y dos neutrones), junto con algunas otras partículas. Una reacción de fusión libera grandes cantidades de energía. La bomba de hidrógeno utiliza la fusión en un entorno no controlado. Los científicos han estado trabajando para controlar y aprovechar la reacción de fusión para producir energía. En una reacción de fusión controlada, los materiales radiactivos están presentes únicamente durante un corto lapso de tiempo. Los residuos se descomponen rápidamente y nada permanece durante mucho tiempo. Además, los residuos no pueden utilizarse para fabricar armas. La ventaja de la fusión es que ésta es limpia y que el hidrógeno necesario para abastecer las reacciones es fácil de obtener. El gran problema de la fusión es que para que funcione, la reacción debe tener mayor temperatura que el interior del sol. El calor debe estar contenido para que la fusión resulte una fuente de energía útil.


Energias Alternativas (Usb) from Nelson Hernandez

Bibliografías: http://es.wikipedia.org/wiki/Energ%C3%ADa_alternativa
http://www.planetseed.com/es/relatedarticle/fuentes-alternativas-de-energia-utilizadas-en-la-actualidad